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Spatial force correlations in granular shear flow. II. Theoretical implications

Gregg Lois,1 Anaél Lemaitre,2 and Jean M. Carlson'
lDepartment of Physics, University of California, Santa Barbara, California 93106, USA
Institut Navier-LMSGC, 2 allée Képler, 77420 Champs-sur-Marne, France
(Received 16 December 2006; revised manuscript received 18 April 2007; published 3 August 2007)

Numerical simulations are used to test the kinetic theory constitutive relations of inertial granular shear flow.
These predictions are shown to be accurate in the dilute regime, where only binary collisions are relevant, but
underestimate the measured value in the dense regime, where force networks of size & are present. The
discrepancy in the dense regime is due to non-collisional forces that we measure directly in our simulations and
arise from elastic deformations of the force networks. We model the non-collisional stress by summing over all
paths that elastic waves travel through force networks. This results in an analytical theory that successfully

predicts the stress tensor over the entire inertial regime without any adjustable parameters.
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I. INTRODUCTION

Granular materials exhibit a broad spectrum of behaviors
that have been difficult to capture theoretically, especially in
the dense regime. A fundamental question is whether, and
when, collective motion becomes important for understand-
ing the macroscopic state of the system [1]. This is a particu-
larly complex issue for granular flows, where the material
structure remains amorphous on all scales. While a notice-
able structural change would surely help pinpoint degrees of
freedom that govern collective dynamics, granular flows re-
quire us to use the dynamics to search for structure.

A central tool in this process is numerical simulation, and
new insights from simulations can provide important clues
for theory. In the companion paper [2] we have presented
evidence for a length scale that increases with packing frac-
tion and is related to correlations between grain forces. These
correlations arise from force chain networks that span the
space between grains and transmit forces elastically. By mea-
suring two-point spatial force correlations in steady-state
shear flow, we were able to extract a length scale ¢ that
characterizes the exponential decay of correlations and the
effective size of force networks. It was also shown that the
mechanisms of momentum transfer are closely related to the
presence of force networks and contact force statistics are
highly dependent on &.

Since contact forces are sensitive to the value of & the
derivation of constitutive relations to describe the stress ten-
sor must be based on properties of force networks. While
network properties have been incorporated into previous
studies of static granular packings [3-9], the importance of
force networks in granular flows has not been adequately
explored. Instead, constitutive relations are generally ob-
tained using comparisons with liquids [10,11] and especially
kinetic theory [12—14], which can be extended to treat dense
materials [15-17] as long as correlations beyond nearest
neighbors are absent.

In this paper we examine two models for constitutive re-
lations in granular flow: kinetic theory and a model referred
to as the force network model. Kinetic theory is rooted in the
dilute limit and assumes no spatial correlations between
grains. The force network model is motivated by our simu-
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lations and attempts to capture the effects of finite-sized
force networks in a mean-field framework, which spans sys-
tem behavior from dilute to dense regimes.

The predictions of these models are compared using mea-
surements of the stress tensor 2,5, which is given by

c
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In this equation, Greek subscripts denote components, italic
superscripts denote grains, and V represents the volume. The
first term quantifies stress resulting from fluctuating veloci-
ties, which is related to the mass of each grain, m', and the
difference between grain velocity v’ and average velocity u
(where boldface symbols denote full, three-component vec-
tors). The second term arises from contacts between grains: it
depends on the contact forces F” and the distance between
contacting grains, /. The sum is taken over all contacts
{i,Jj} in the system.

We focus here on the second term, which is directly asso-
ciated with contact forces and historically called the static
stress, and specialize on nonfrictional systems where o/
X F7=0. This allows us to write the static stress tensor 3}, ;
as

c
V= 2 66l (2)
{ij}=1

where 0/=0"¢" and F" is the magnitude of the contact
force between pairs {i,j} of contacting grains. In what fol-
lows we will further separate the static stress into a “colli-
sional” component, arising from instantaneous binary colli-
sions between grains, and an “elastic”’ component, arising
from long-lasting contact forces between grains in force net-
works. This makes a total of three contributions to the stress
tensor: a kinetic term due to fluctuating velocities (which is
small and we ignore here), a collisional term that we dem-
onstrate is well described by kinetic theory, and an elastic
term that precipitates the breakdown of kinetic theory in the
dense inertial regime. All measurements are made using two-
dimensional contact dynamics (CD) simulations of simple
shear flow, with parameters identical to those described in
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the companion paper [2]. The CD algorithm simulates granu-
lar materials in the limit where grains are perfectly rigid. We
employ Lees-Edwards boundary conditions to simulate shear
at constant volume, without boundary effects.

We begin in Sec. II with an investigation of dilute inertial
flows and test the predictions of hard-sphere kinetic theory.
We find that kinetic theory begins to break down when elas-
tic stresses become nonzero. In Sec. III we focus on dense
inertial flows where this breakdown occurs and introduce the
force network model to predict the elastic stresses.

II. DILUTE INERTIAL FLOWS

Over the past 25 years [18,19] the kinetic theory of dense
gases has been generalized to include granular flows, where
thermal fluctuations are absent and energy is dissipated at
each contact. The dissipation mechanism most often consid-
ered is instantaneous collisions with constant restitution
coefficient—this is called hard-sphere kinetic theory [20]. In
order to make progress using hard-sphere kinetic theory, it is
necessary to begin by postulating that only binary collisions
occur between grains. Without this assumption, calculations
quickly become intractable since high-order correlations
must be included in kinetic integrals.

The principal microscopic input to hard-sphere kinetic
theory is the collision rule between grains. This relates the
initial velocities of two interacting grains {v'’,v'/} to their
final velocities {v,v/}:

(V=) 6= vy G)

The normal coefficient of restitution e that appears in this
equation determines the energy dissipated in each collision:
for e=1 the system is elastic and no energy is dissipated; as
e is reduced to zero, the energy dissipation scales as 1—e”.

Kinetic theory relies on the assumption that only binary
collision are relevant and is therefore expected to break
down as the density of the flow increases and long-lasting
contacts arise [21-24]. Quantitative bounds over which the
binary collision assumption holds have only recently been
estimated [25,26]. The CD algorithm used here to simulate
granular flows is well suited for testing the relevance of the
binary collision assumption and bounding the dilute regime.
Like hard-sphere kinetic theory, the CD algorithm employs a
normal coefficient of restitution. However the CD algorithm
does not assume a priori that only binary collisions occur.

On the contrary, we observe that multigrain contacts are
the dominant interaction in dense flows. This is evident in
force correlation measurements [2], which identify a grow-
ing correlation length & This length scale should be an indi-
cator of the breakdown of the binary collision assumption
since it implies that grain forces are correlated over large
distances and do not simply depend on nearest neighbors. To
see how this comes about, it is useful to measure the static
stress tensor.

Equation (2) gives the microscopic expression for the
static stress tensor, which depends on contact forces between
grains. In the case that only binary collisions are considered,
as in kinetic theory, the value of the static stress tensor is
determined by inserting the binary collisional force into Eq.

—e(v'i=
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(2). The collisional force is the force that occurs between a
pair of colliding grains that are not part of a force network.
Given the initial velocities v’/ of grains i, the collisional
force between two grains is given by

Foe=(1+o)u[(v/ v

where e is the normal restitution coefficient, u=m'm//(m'
+m’) is the reduced mass, and 6% is the unit vector connect-
ing the centers of grains i and j. This expression is equal to
the change of momentum of grains i and j, per simulation
time step dt, due to binary interactions. Since all of the pa-
rameters can be measured in simulations, the collisional
force is a useful probe of the dynamics and was used in the
companion paper to exhibit the presence of force networks.

Inserting the collisional force into Eq. (2) yields the “col-
lisional” stress tensor

6//dt, (4)

aﬁ_ 2 oy AUO'UFbL» (5)
{i.j}=0

which only includes the effects of binary collisions between
grains and is the stress tensor that all hard-sphere kinetic
theories attempt to model [26]. This is because only binary
collisions between grains are considered and contact forces
can be no larger than the value given in Eq. (4).

If relevant interactions occur only via binary collisions,
the collisional stress in Eq. (5) and the static stress in Eq. (2)
are identical. However, a discrepancy between the collisional
and static stress tensors indicates that momentum transfer is
not carried out by binary collisions alone. Comparing the
static and collisional stress tensors in Egs. (2) and (5) there-
fore provides an opportunity to test the binary collision as-
sumption and thereby determine when kinetic theory can be
applied to hard-sphere granular flows.

In Figs. 1 and 2 we plot measurements of the static and
collisional stress tensor for a wide range of restitution coef-
ficients and packing fractions in terms of the pressure p and
shear stress s, which are related to the stress tensors by

1
{p*.p™}= 7 Gar+2%), ( 390 (6)

{s® Sbc} {212’ } {Ezls (7)

In Figs. 1 and 2 both the collisional and static values of
the pressure and shear stress are normalized by common fac-
tors that are explained later, in the paragraph beneath Eq.
(14). For now, it is only important to note that there is a
dilute regime where the binary collision assumption holds
and the collisional and static stress tensors are equal. The
bounds of this regime depend on the value of both the resti-
tution coefficient and the packing fraction. The data support
a conclusion that the dilute regime is approached as the den-
sity is reduced or restitution is increased. For high densities
the collisional and static stress are not equal, and there is a
nonzero elastic component of stress. The data support the
existence of both a dilute regime, where only binary colli-
sions are relevant, and a dense regime, where elastic stresses
become important.
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FIG. 1. (Color online) Main figures: normalized values of the pressure (left) and shear stress (right) for large restitution coefficients e
=0.92, ¢=0.75, and ¢=0.5. The pressure is normalized by p, from Eq. (12) and the shear stress is normalized by y7, from Eq. (13) . The
dilute regime is characterized by the range of restitution and packing where the static and collisional values are equal. Solid data points
correspond to values of restitution and packing where &/&,> 1.25—this provides a simple quantitative condition for the boundary of the
dilute regime. Kinetic theory is expected to apply in the dilute regime, and the prediction for the pressure is accurate for all e. The prediction
for the shear stress overestimates the actual value, due to positive velocity correlations. Insets: precollisional velocity correlations as a
function of packing fraction [defined in Eq. (15)].

In the companion paper [2] it was shown that the there is
a well-defined transition between dilute and dense regimes
that occurs at the empirically determined value of &/§&
=1.25, where £ is the size of the force networks and &, is the
size in the limit of low density. This transition takes place
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when noncollisional elastic forces become relevant to mac-
roscopic observables, and the critical value of & can be de-
termined by a qualitative transformation in the contact force
statistics. If &/&,=1.25 is a well-defined transition point,
then it should also be relevant in the dilute to dense transfor-
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FIG. 2. (Color online) The same as Fig. 1 for small restitution coefficients of ¢=0.25, ¢=0.1, and e=0.

mation seen here in the data of the pressure and shear stress.
In Figs. 1 and 2 we have colored the data points where
&/ €,>1.25, using data from the companion paper. For all
restitution coefficients, this simple condition on ¢ nicely
characterizes the dilute regime—if &/&,;<<1.25, then the
static stress tensor is approximately equal to the collisional
stress tensor and the predictions of kinetic theory apply; if
&/&,>1.25, then interactions between networks of grains
become important, the static stress is larger than the colli-
sional stress, and kinetic theory does not apply. This provides
further evidence that &/&,=1.25 is a useful quantitative
bound for the dilute regime.

In the dilute regime where &/&,,<<1.25 and EZB=EI;CB, we
can test the predictions of hard-sphere kinetic theory for both
the pressure and shear stress. These predictions have been
obtained recently [15-17] using the Chapman-Enskog ex-
pansion to solve the Enskog equation. The Enskog equation
determines the time dependence of the one-particle probabil-
ity distribution function (PDF) in terms of collision events
between grains. Collision events consist of binary interac-
tions and the time dependence of the one-particle PDF can
therefore be expressed in terms of just the two-particle PDF.
For hard-sphere granular materials, Enskog’s equation reads
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Physically, the time dependence of the one-particle PDF A
is related to a collisional term Jg that quantifies the probabil-
ity to gain and lose contributions at a certain velocity v;. The
first term in Jg gives the probability that a binary collision
between grains results in a grain having velocity v;, and the
second term gives the probability that a binary collision oc-
curs involving a grain that has velocity v;, thereby reducing
FY(v,). The binary collisions occur according to Eq. (3) and
primed velocities represent precollisional values. ® is the
step function and g=v,—v,. For hard-sphere granular flows,
this form for the Enskog equation can be formally derived,
starting with the binary collision assumption and the pseudo-
Liouville equation [20,27].

A prediction for the collisional stress tensor is obtained by
multiplying Eq. (8) on each side by mv;, where m is the
particle mass, and integrating over v,. This yields the trans-
port equation for momentum density [15], which gives the
stress tensor

1+
Eﬂrgd= 4em0'f dvlfdvzf dé O(6-g)

1
X(& - g)2craaBJ dn fP[r-(1-No,r
0

+ N0,V V,,1]. (10)

In order to determine the stress tensor and solve the Enskog
equation, it is necessary to express f2 in terms of fV). As-
suming there are no velocity correlations between grains that
are about to collide yields

S0, v0,0) = X (0,1 A0, VD A0, V5,0 (11)

and reduces the Enskog equation (8) to a nonlinear differen-
tial equation for the one-particle PDF. The function y is in-
terpreted as the equilibrium correlation function at contact
and depends on the local value of the density.

Once the Enskog equation has been expressed in terms of
only the one-particle PDF, it can be solved using the
Chapman-Enskog expansion [28,29], which expands 1) and
Jr in gradients of the mass density, momentum density, and
energy density. This process has been carried out for granular
shear flows to first order in the gradients in Refs. [15-17]. In
two dimensions, this gives predictions [17] for the pressure
pPd and shear stress sPd:

pred
=(1+e)yxv, (12)
Po
spred 4v< 4 )
—=—|—+wx(1+e)fle) ], (13)
Y7o S-e
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which only depend on the restitution e, the packing fraction
v, and the pair correlation function at contact y. The normal-
izing factors are given by po=nmT/2 and ny=m/o\NT/2m,
where m is the grain mass, o the grain diameter, 7 the granu-
lar temperature, and n the number density. We measure all
the variables of Egs. (12) and (13) in simulations and test the
predictions of hard-sphere kinetic theory without fitting pa-
rameters. We use the average value of grain mass and diam-
eter for m and o, and determine y by tracking the number of
collisions that occur per second (which we denote by w) in
equilibrium simulations where e=1 and y=0. Enskog theory
relates y to w through the equation w=+\2wéTxno. This
method for measuring y has been used in other recent studies
[30].

We plot the normalized predictions from Egs. (12)—(14) in
Figs. 1 and 2, where they are compared to data for the stress
tensor. Since hard-sphere kinetic theory assumes binary col-
lisions, the predictions only apply to the dilute regime where
&/ &, <1.25. These are the open symbols in Figs. 1 and 2. We
immediately notice that the prediction for the pressure
matches the measured pressure in all of the dilute systems we
have investigated. Considering that there are no adjustable
parameters, this is a tremendous success for kinetic theory.

The prediction for the shear stress matches the data in the
dilute regime only for large restitution. As the restitution
becomes smaller, the prediction for the shear stress begins to
overestimate its measured value. This overestimation is due
to precollisional velocity correlations, a mechanism that has
been investigated in previous studies [31]. Since Eq. (11)
assumes no precollisional velocity correlations, if these cor-
relations exist, then the average momentum transferred in
each collision changes. If the precollisional normal velocities
of two grains tend to be aligned (antialigned), then the aver-
age momentum transferred decreases (increases), causing the
kinetic theory prediction to overestimate (underestimate) the
measured values.

In the insets of Figs. 1 and 2, we plot measurements of the
precollisional velocity correlations C,, defined as

C,=((v'"- 67) (v - 6))T, (15)

), (14)

which are normalized by the granular temperature. This defi-
nition yields a positive value when precollisional grain ve-
locities tend to be aligned, and for all restitution coefficients
we observe that the correlations are positive. In addition, the
magnitude of the discrepancy between measured and pre-
dicted shear stress is roughly proportional to the size of the
velocity correlations. These observations support the conclu-
sion that the errors in the kinetic theory prediction are due to
precollisional velocity correlations.

To summarize, the stress tensor predicted by hard-sphere
kinetic theory matches data from our simulations in the di-
lute regime where &/&,<<1.25 and at high restitution coeffi-
cients. As the restitution coefficient is decreased in dilute
flows, the prediction for the shear stress begins to fail due to
the “molecular chaos” assumption of Eq. (11). Additionally,
as &/&, becomes larger than 1.25 in the dense regime, the
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hard-sphere kinetic theory predictions are inaccurate since
the binary collision assumption is not valid. These observa-
tions indicate that the fundamental assumptions of molecular
chaos and binary interaction do not always apply and must
be addressed.

Recent research [20,32] has concentrated on refining the
molecular chaos assumption to account for velocity correla-
tions in the dilute regime, which have been measured exten-
sively [31,33-36]. However, in the dense regime, where net-
works of interacting grains become important, even an exact
inclusion of velocity correlations will not accurately describe
the physics since the binary collision assumption does not
apply. In this regime it is important to take into account
elastic stresses that arise from long-lasting interactions be-
tween grains, in addition to the collisional stresses that ki-
netic theory considers. In the next section we introduce a
model to incorporate the elastic stress.

II1. DENSE INERTIAL FLOWS

Dense inertial flows are not quasistatic and cannot be
modeled by assuming binary interactions between grains.
Long-lived contacts arise in this regime, which result in
force networks that contain many grains, but do not span the
shearing volume [2]. Dense inertial flows occur in the range
of densities between the dilute and quasistatic regimes and
exhibit properties of both limits. Like dilute flows, dense
inertial flows are characterized by a Bagnold rheology where
the stress tensor is proportional to the square of the shear rate
[37-40]. However, as in quasistatic flows, the value of the
stress tensor also depends on the properties of force chain
networks which grow to sizes &> 1.

An ideal constitutive model of granular shear flow would
enable a full determination of the stress tensor in all regimes
of granular flow. While most models are specialized to either
the dilute or quasistatic regimes, there is evidence that a
model based on the inertial number, a dimensionless number
proportional to the shear rate divided by the square root of
pressure, would enable a description that spans all densities,
including the dense inertial flows [38,40]. Low values of the
inertial number would correspond to quasistatic flows, high
values to dilute flows, and intermediate values to dense iner-
tial flows.

Here we focus on the properties of force networks in con-
structing a constitutive model for granular shear flow at all
densities. The central concept of our model is that forces are
transferred elastically through finite-sized contact networks
and the value of the contact force between any pair of grains
depends on both the relative velocity of the contacting pair (a
“collisional” contribution inspired by kinetic theory) and the
values of the other contact forces in the network, even those
a long distance away (an “elastic” contribution). This leads
to predictions for all components of the stress tensor, which
are shown to hold over the entire inertial regime without
fitting parameters, and incorporate the noncollisional stress
that arises when force networks have formed. While the re-
sulting expressions are somewhat complex, the central con-
cept of forces propagating through networks is basic and
fundamental. Since the model accurately predicts the stress
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tensor, it also predicts the inertial number and yields simple
scaling relationships near jamming at v, and the network
transition at .

An important parameter that emerges from this analysis is
the network size &. Like the inertial number, £ is a parameter
that is relevant in all regimes of granular flow. It varies con-
tinuously from the dilute regime, where interactions are bi-
nary and the network size is unity, to the quasistatic regime
where force chain networks extend over the entire system.
Since our model predicts the inertial number as a function of
¢, this raises the possibility that other observables in granular
flow can be described in terms of network parameters and a
mesoscopic length scale is underlying much of the complex
behavior seen in granular flow.

A. Force network model

An important feature of dense granular materials is that
forces can be transferred over distances much larger than the
grain size. This is especially evident in static packings of
grains, but is also important when considering dense flows.
The only necessary requirement for spatial force propagation
is the existence of connected networks of interacting grains.
When this requirement is met, elastic waves propagate
through the networks at a speed set by the values of the
elastic moduli and there is an elastic component of the stress
tensor. This elastic contribution must be added to the colli-
sional part of the stress in Eq. (5) to yield the full static stress
tensor of Eq. (2). Therefore the full static stress tensor is
comprised of two components: one describing the elastic re-
sponse and one describing the collisional response.

From a microscopic viewpoint, the value of the static
stress tensor is determined by contact forces between grains,
as in Eq. (2). Therefore, in the presence of force networks,
these contact forces must also be comprised of collisional
and elastic components. The collisional component is given
by Eq. (4) and represents the local force due to collisions
between pairs of grains. It depends only on properties of the
two contacting grains. The elastic component is a result of
elastic deformations in the contact network. It is a nonlocal
force that arises from the network applying an effective pres-
sure on every pair of contacting grains.

In dilute flows only the collisional component of contact
forces is nonzero and the static stress tensor is well described
by kinetic theory. In the quasistatic regime the elastic com-
ponent of the forces is much larger than the collisional com-
ponent and the latter is usually disregarded. In dense inertial
flows, both components contribute. The force network model
extends hard-sphere kinetic theory by explicitly calculating
the effects of elastic waves in force networks. This leads to a
prediction for the elastic component of contact forces, which
result from forces propagating through force networks at the
elastic wave speed. Inertial flows correspond to the limit
where forces propagate throughout the entire network before
it is destroyed, which ensures that the shear rate remains the
only relevant time scale. This is equivalent to the limit where
the elastic wave speed is infinite, or the grains are perfectly
rigid. It is the limit we address here.

Mathematically, the contact force F/ between grains i and
Jj is equal to the sum of a collisional term plus elastic effects
from the network:
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FIG. 3. (Color online) A typical force network of grains from
simulations with e=0 and »=0.75. Grains not connected to this
particular cluster are not shown. In the force network model, the
elastic force between grains i and j arises from collisional forces
that propagate through the network. Lines are drawn between con-
tacting grains, with the bold lines illustrating different paths through
the network. The path d—e— f—i is defined as a path of length
€=3 since the collisional force ng must travel through three grains
to affect the contact {i,;}. Also illustrated are paths of length €=1
(a—j) and €=2 (b—c—j). At each link in a path, the transferred
force is reduced by a factor equal to the cosine of the angle made by
the lines. The total elastic force is determined by summing over all
possible paths through the network.

1gmzt)(

Fi=FJ+ > Fi. (16)
€=1

In this equation the first term is the collisional force, defined
in Eq. (4), and the second term arises from forces that propa-
gate through paths in the force chain network, as illustrated
in Fig. 3. We find it convenient to split this term into contri-
butions Féj that represent added forces from different path
lengths €. The total elastic force created by the network is
then equal to the sum of the contributions F7 over all pos-
sible path lengths €<{,. that elastic waves propagate
through the force network.

Figure 3 illustrates force propagation and defines the no-
tion of path length on a network topology. For example, a
collision between grains d and e increases the force between
grains e and f, which increases the force between grains f
and 7, which has the net effect of increasing the contact force
between grains i and j. We denote this as a path of length 3
(€=3) since the local force F{ must propagate through three
links to influence the contact between i and j. Paths of length
€=2 and €=1 are also illustrated.

Given the topology of the network and the collisional
forces on all contacts, our aim is to determine the value of
the resulting elastic forces. In the limit of rigid grains, where
grain stiffnesses are infinite, two important simplifications
can be applied. First, infinite stiffness implies infinite wave
speed, and therefore forces propagate instantaneously. This
means that the time it takes for forces to propagate through a
network is much smaller than the network lifetime and the
network topologies can be considered static. Second, forces
are not related to grain deformations (or overlaps) and there-
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fore energy is only dissipated in collisions. This implies that
no energy is lost as forces propagate through a network. For
soft grains with finite stiffness, these two simplifications do
not apply: the network topology changes as forces propagate
and additional energy is dissipated in the process.

While soft grains more closely resemble experimental
systems, the rheologies of soft and rigid grains are identical
(and inertial) if the stiffness of the soft grains is above a
threshold [41]. By investigating properties of rigid grains we
can predict the stress tensor in inertial granular flows. In this
limit, due to constraints from the network, interacting grains
cannot properly recoil from a collision event and the initial
kinetic energy that would have been transformed into grain
velocities is instead transformed into elastic potential energy
of the network. The transfer of energy leads to elastic forces
and is quantified below.

We begin by considering a path of length €=1, as illus-
trated in Fig. 3. Because grain a is in contact with grain j, the
local contact force FJ increases the value of FV by some
amount. The magnitude of the increase can be determined by
the following argument: if grain j had no contacts other than
a, the collisional force F{ would result in a velocity of grain
J with magnitude proportional to F{fC and in the direction of
the unit vector between grains a and j, denoted here as 67/,
However, since j is in contact with i, the velocity that would
have been created in the direction of @ is instead trans-
formed into elastic potential energy and thereby a force be-
tween grains i and j. In accordance with Eq. (4), the magni-
tude of the transferred force is proportional to the velocity of
grain j in the direction of ¢*, which is in turn proportional to
the collisional force F{fC multiplied by the cosine of the angle
between the unit vectors connecting contacts {a,;} and {i,}.
This yields a extra contact force of /- /*F|* at the contact
{i,j}, due to the collision between {a,;}. Note that we have
implicitly assumed that the kinetic energy is transformed into
elastic potential energy without any dissipation. This is a
consequence of the rigid grain limit, where particles are ei-
ther in contact with zero relative velocity or out of contact.
In this limit, energy is only dissipated upon collisions and no
energy is dissipated as forces propagate through networks.
Paths of length €=1 are the simplest case of force transfer,
and we have verified in contact dynamics simulations of
three grains that forces are indeed reduced by the cosine of
the angle.

More generally, if grain i has z; contacts labeled by m and
grain j has z; contacts labeled by n, then the effect of all
paths of length 1 is to increase F” in Eq. (16) by an amount

i i
2 6 emFR+ X 67 6MF (17)

m=1;m#j

A=
n=ln#i

where ¢ is the unit vector connecting the center of grains a
and b. This expression includes all of the effects from paths
of length €=1 on each of the contacting grains i and j. To
better understand the origin of the expression in Eq. (17), it
is useful to read the terms in the summations from right to
left. In particular, for the first term, the collisional force {)’2
increases the force on contact {i,;} by an amount given by

A

the cosine of the angle in the path é7'- ™. Similarly, for the
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second term, the collisional force F{" increases the force on
contact {i,j} by a similar cosine 6% 6"

In an analogous manner, we can also determine the effect
of paths of length 2. The path from grain b to ¢ to j in Fig. 3
comprises a path of length 2 (€=2), which increases the
value of F/ due to the local force between b and c. Note that
we ignore the fact that the local force between ¢ and j also
increases F, since this contribution was already included in
the €=1 expression of Eq. (17). The total additional force
between grains i and j arising from paths of length 2 is given
by

Zl Zm
J AJl . Adm Adm | agmp ppmp
FY = > e Y 6 G"Fp
m=1;m#j p=lLip#Fm
Zj Zn
+ X e Y ¢GEY, (19)
n=1;n#i g=l;q#n

where grain i has z; contacts labeled by m and grain j has z;
contacts labeled by n. To calculate the effect of paths of
length 2, we also take into account the z,, contacts of grain
m, labeled by p, and the z,, contacts of grain n, labeled by q.
Once again, it is useful to read these expressions from right
to left. For the first term, the collisional force Fp.” is propa-
gated to its nearest-neighbor contact {m,i} and reduced by a
factor of the cosine of the angle ™. ¢, Then, the remain-
ing portion of the original collisional force is again propa-
gated to the contact of interest {i,;} and further reduced by
the cosine of the angle 67'- 6. So paths of length 2 corre-
spond to force propagation through contacts of contacts of
grains i and j. At each link of the path the magnitude of the
propagated force is decreased by the cosine of the angle be-
tween subsequent contacts.

The contributions to F¥ from path length £>2 can be
determined by continuing the above arguments. They depend
on the coordination number z and are also sensitive to the
geometric arrangement of force networks. For example, to
incorporate paths of length 3 we would need to include con-
tacts of contacts of contacts. The sums would contain terms
of the form

(a.ji . é.lm)(é.zm . é.mn)(é.mn . 6‘"0) gtcn (19)

summed over grains m, n, and o, which are contacts of grains
i, m, and n, respectively. This expression includes three co-
sine factors (one for each link in the path) and one collisional
force at the end of the path, which corresponds to the distant
collisional force having a progressively weaker effect as it
propagates through many links in the network. Similar ex-
pressions can be written for arbitrary path lengths.

One important constraint arises as z becomes large, which
is a result of energy conservation. If we consider the total
energy 7Y that an arbitrary contact {i,j} transfers to the net-
work, this must always be less than or equal to the total
kinetic energy initially stored in the contact (via the kinetic
energies of grains i and j). This is because, while energy
must be conserved in this process, some is transferred to the
elastic energy of the network and some remains as kinetic
energy of grains i and j. The average collisional force (F,’;jc)
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is proportional to the square of the relative velocities [15]
and thereby proportional to the kinetic energy contained in
the contact. Therefore, on average, the magnitude of the col-
lisional force transferred to nearest neighbors must not be
greater than (FiJ).

The total force transmitted from contact {i,j} to its nearest
neighbors is given by

Zi Zj
> &M GFL+ D, ¢ 67FL. (20)

m=1;m#j n=l;n#i

Due to the fact that energy is conserved, the sum of Eq. (20)
over every contact must be less than the sum collisional
force over every contact. Therefore, on average for each con-
tact, we have that

i i
. ami mdirii ani i
T = ( S i GiFis S am.onpgc>
m=1m#j

n=1l;n#i
= (Fio), 1)

which is a global constraint. It ensures that the total energy
supplied to the network never exceeds the initial kinetic en-
ergy as the elastic waves move from first-nearest neighbors,
to second-nearest neighbors, and so on.

Equations (17)—(21) model the physical origin of elastic
forces that exist in dense granular materials and allow for a
complete determination of F7. The numerical value of the
elastic force between a pair of contacting grains is calculated
by summing these contributions over all possible path
lengths ¢, as in Eq. (16).

The maximum possible path length €., is constrained by
the size of the force networks. A straight chain of grains that
spans the network has €*=¢/&,—1. While there are also net-
work spanning chains with € > €*, their contributions to elas-
tic forces are diminished since the magnitude of the colli-
sional force at the end of the chain is reduced by the product
of the cosine of the angles in the chain. We will therefore set
Coax=&/&,—1 and only consider the network spanning
chains that give the largest contribution. This amounts to
completely ignoring the effects of path lengths with €
> ..« Which increase the elastic force on the contact {i,j}
by an amount A:E?zgmx 1 FJ. We do not expect this ap-
proximation to produce a large error in the total elastic force
on {i,j} since A<Fzmax and, in general, F, < F/ for €
< rax-

Given the above analysis, it is possible to completely de-
termine the stress tensor based on properties of the force
network and the collisional stresses. This is carried out in
Sec. III B and the predictions are tested in Sec. III C.

B. Calculating the stress tensor

The analysis in the previous section holds in any spatial
dimension. However, in order to predict the stress tensor, we
find it necessary to rewrite the equations of the force network
model in terms of integrals instead of sums. Here we carry
out this substitution for a two-dimensional system, although
it can be generalized to higher dimensions, resulting in
slightly more complex equations.
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If we consider the average force between two grains that
contact at an angle 6, denoted F(6), then Eq. (16) can be
generalized to read

a1

F(O)=Fo()+ X Fi(6). (22)
=1

This equates the average force between grains contacting at
angle 6 to the average collisional force at that angle, plus
elastic effects from the network. In what follows we will
measure 6 with respect to the axis of shear, so that =0
corresponds to the axis where there is no gradient in grain
velocities.

Generalizing Egs. (17) and (18) to arbitrary path length ¢
gives

¢ 6;_+27/3
Fe(Op) = H (z— I)J' db; cos(6;— 6,_)
i=1 0;_-27/3
XP(6; = 0,_1)C(6,)Fye(6y). (23)

In this equation, the sums from Egs. (17) and (18) have been
replaced by integrals over 6;, which is the angular orientation
of each link in the chain. Each integral contains a cosine that
replaces the dot product. Note that the bounds of the inte-
grals are arranged such that the grain at link 7 is not permit-
ted to overlap the grain at link i—1. The function Fy.(6,)
provides the collisional force at the end of the path. In order
to properly characterize the probability to have a contact at
6;, we also introduce the functions C(6) and P.. C(6) gives
the probability to have a single contact at angle 0 [42-46]. In
the case that there are two (or more) contacts on a single
grain, which is necessary to form a chain, this probability
must be modified [47]. The function C(6,)P(6,—6;_;) gives
the conditional probability to have a contact at 6;, provided
that there is already a contact at 6;_;. P~ depends on the
average number of contacts, z, and the averaged fluctuations
of z in a given network. The prefactor z—1 gives the average
number of contacts to which the collisional force is trans-
ferred.

Equation (23) generalizes the sums in Egs. (17) and (18)
to arbitrary path length €. It does so by averaging over one-
particle distribution functions. These come in the form of the
average collisional force Fi.(6), the average contact prob-
ability on a single grain C(6;)P-(6;,—0;_;), and the average
coordination number z. Naturally, there must not be correla-
tions between these variables in order for the predictions to
apply. The definition of P, ensures that there are no correla-
tions between the contact probabilities and the coordination
number, but it is not guaranteed that the collisional forces are
not correlated with the network structure. In fact, when
closed loops form in the force networks, the collisional
forces and network structure do become correlated. There-
fore, Eq. (23) only applies as a mean-field approximation
that ignores the correlations induced from loops in the force
networks. This is a valid approximation since the effect of a
collisional force that propagates around a loop is reduced by
the product of the cosine of the angles around the loop,
which is quite small compared with direct propagation.
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To solve the integrals in Eq. (23), we change integration
variables to x;=6,— ;_;. This results in the expression

27/3
dx; cos(x;) P(x;)
—2a3

¢
Fuo)=11Gc-1
i=1

i 4
XC[0+2xJ-]FbC[0+2x»], (24)

J=1 J=1

which incorporates the average effect of all forces that
propagate through paths of length € on contacts with orien-
tation 6.

In addition to force propagation based on the cosine of the
angle between subsequent contacts, we must also incorporate
the global constraint from Eq. (21). This can be generalized
to

2/3
T(0) = (Fo(0)(z - I)J dxP (x)cos(x)C(6+ x)

—2m3
= (Fu(6)) (25)

and restricts the total energy transferred through the network.

Equations (24) and (25), combined with the basic force
network Eq. (22), comprise the integral form of the force
network model. In order to carry out the integrations, it is
necessary to know the functional form of C(6) and F.(6).
These functions are 7 periodic and can be written as a Fou-
rier series, keeping only terms that are also 7 periodic. Pre-
vious research on the contact probability [42-46] has shown
that C(6) is well approximated by keeping only the lowest
Fourier terms. We find that F,.(6) has the same property. We
therefore approximate

1
C(0)=5—(1+a,sin 20+ a/ cos 20), (26)
v

Foe(0) = (Fu)(1 +ay sin 26+ ag cos 26). (27)

In Fig. 4 we plot data of these functions for a granular ma-
terial with e=0 and v=0.79, along with a fit to the above
equations. The fit is constructed by computing the fabric
tensor  ¢,3=(6,05 and force-fabric  tensor xgz
=(Fpc0,0)/(Fy.), where &, is the & component of the unit
vector between contacting grain centers, Fy,. is the collisional
force on the contact, and the average is taken over all con-
tacts. The anisotropies in the contact and force distributions
{ac,aé,af,a}} are related to eigenvalues of the fabric tensors
[45], which are simple to measure. We see from the plots that
this first-order approximation for the contact probability and
collisional force is quite good.

We have measured C(6) and F\.(6) for a wide range of
restitution coefficients and packing fractions. In Fig. 5 we
plot the value of the Fourier components from Egs. (26) and
(27), which characterize the functional form in all cases.
These plots reveal that the anisotropy in both the contact
probability and collisional force depends sensitively on the
value of the packing fraction and restitution coefficient. The
size of the components is of the order of 107! whereas the
magnitude of the next-order coefficients in the Fourier series
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() (b)

1.5

FIG. 4. Polar plots of measurements (data points) and fits (lines)
of (a) the contact probability distribution C(6) and (b) the colli-
sional force distribution Fy.(6)/{Fy.) for a granular material with
e=0 and v=0.79. The lines are fits of Egs. (26) and (27), and the
values of the Fourier components are plotted in Fig. 5.

is much smaller. This allows us to truncate the series in Eqs.
(26) and (27) at first order and still get good agreement with
the actual data, as in Fig. 4.

Now that we have a functional form for C(6) and F,.(6),
we can solve for F(6) to first order in the Fourier compo-
nents {ac,ac’_,af,a}}. This gives

Fo(0) = (Foe)(z— 1) (D" + ‘I’((af sin 260+ a} cos 26)
4
+ >, WD (g, sin 20+ a’ cos 26)), (28)

i=1

where @ and W are variables that depend on the geometry of
the force networks and are expressible as

—=—e=0
—4A—e=0.1
—v—e=0.25
——e=0.5
——e=0.75

02 04 06 038
packing fraction

02 04 06 08
packing fraction

02 04 06 0.8
packing fraction

FIG. 5. Measured values of the Fourier components from Eq.
(27).

—6—e=0.92
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273
{d,V}= dxP (x)cos(x){1,cos(2x)}. (29)

=23

We can also solve for the constraint in Eq. (25). To lowest
order in the Fourier components, the constraint equation
gives
(6

Lz@(z—l)ﬁl. (30)

(Fe(0))
This, combined with Eq. (28), provides a closed formula
for Fi:

Fe(6) = <Fbc>(min[<1>(z -1+ Pi(z-1)"

X(aysin 260+ a}- cos 26) (31)

€
+ X Wiz — 1)imin[®(z - 1),1]¢

i=1
X(a, sin 20+ a, cos 20)), (32)

to first order in {ac,ac’,af,a;}, where min[A,B] is equal to
the smaller of A and B.

This solution can now be used to arrive at a constitutive
relation for the stress tensor. The static stress tensor is given
by Eq. (2), which can be rewritten in two dimensions as

cos’ 6 cos 6 sin 0)

sin® @

= ‘l/f dacw)a(e)F(e)(

cos @ sin 0
(33)

where o(6) is the average value of the distance between
grains at contact for a given angle. In our simulations we
observe that o(6) has very little dependence on 6 (of the
order of less than 107*). Thus o(#)=(0o). We can also use this
same integral form to determine the collisional stress tensor
by replacing F(6) with Fy.(6).

In this paper we have concentrated on the pressure and
shear stress. The pressure is given by one-half the trace of
Eq. (33) and the shear stress by either off-diagonal element,
but these two quantities do not fully describe the stress ten-
sor. There is a third independent term and, without loss of
generality, we use 2. Inserting the solution for F(6) from
Egs. (22) and (32) into Eq. (33), we arrive at the following
constitutive relations that fully describe the stress tensor:

o e Hhrl
= > min[®(z-1),1]", (34)
p (=1
§S— Sbc 1 fé-1 ¢
—== > |aV'(-D'+a X2 Viz-1)
p 2 5 i=0
Xmin[®(z - 1), 1]“") , (35)
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FIG. 6. (a) The coordination number z and (b) ® and ¥ [Eq. (29)] for a wide variety of packing fractions and restitution coefficients. The
line labels (e values) in (b) are the same as in (a). Although z and W depend sensitively on the value of v and e, the value of ® is always

approximately 0.83.

s —Ebc &ég-1 4
= X min[q)(z—1),1]‘5+—2ﬁ\lf‘5(z—1)‘Z
p =1

,
+ “2—”2 Wi(z—1)'min[®(z - 1), 1]“) . (36)

i=0

These equations relate the static stress tensor to its collisional
values and properties of the force networks. The left-hand
side (lhs) of each equation gives the difference between the
static and collisional values of stress, which is equivalent to
the elastic stress components. These differences are equal to
network properties on the rhs of each equation, which are
summed over all possible force chain path lengths € in the
network. The relevant network parameters are the network
size &/&,, the average number of contacts per grain, z; the
components {af,a}}, which give the angular dependence of
the average contact force on a grain via Eq. (27); the com-
ponents {a.,a.}, which give the angular dependence of the
number of contacts on a grain via Eq. (26); and {®,V¥},
which are geometrical variables related to the probability of
having multiple contacts on a single grain, as defined in Eq.
(29).

A large number of network parameters appear in the con-
stitutive equations, which makes their form rather compli-
cated. This is to be expected, since the structure of the force
networks is complex and the predictions of Egs. (34)—(36)
span system behavior from very dilute granular materials
with ¢»=~0 to dense granular materials with ¢ arbitrarily
close to ¢, (and for all restitution coefficients e¢). The prop-
erties of the networks change considerably over this range of
parameter space, and they must be retained in the equations.

Simple scaling relations can be obtained near certain
packing fractions. For example, near the network transition
at v, Eqs. (34)~(36) predict that (3},5—35%) o (z—1). This is
because, when &/ &= 1 near v, the deviation from the col-
lisional stress is dominated by forces transmitted between
nearest neighbors. Therefore the excess number of contacts
serves as the dominant scaling variable. In contrast, near the
jamming transition at v,, networks are saturated so that Eq.
(21) takes its maximum value and all of the kinetic energy

from each contact is transferred to the network. In this case
the stress tensor should depend on the size of the networks,
and the constitutive relations indeed predict that EZBOC ¢
This scaling is especially interesting since it suggests that the
size of the networks is the important scaling variable, which
might also control other features of the jamming transition.
Indeed, once & becomes large, it is clusters of grains, and not
individual grains, that serve as the basic thermodynamic de-
grees of freedom.

Finally, we consider the limit of &/§,,— 1 where force
networks consist of only two grains. In this limit the force
network model predicts that EZB=EZCB, which is the appro-
priate result in the dilute regime where kinetic theory holds.

C. Testing the predictions

Equations (34)—(36) make predictions for all independent
components of the stress tensor over the complete range of e
and for ¢<¢. and comprise the central result of the force
network model. The difference between the static and colli-
sional values of stress is related to features of the force net-
works. These include the anisotropies in the contact prob-
ability and collisional force {ac,ac’,af,a}}, the size of the
force networks &/ &, the average coordination number z, and
a pair of geometric variables {®, W} that are defined in Eq.
(29) and are related to the distribution of contacts on single
grains. All of these variables except z, @, and W have been
measured previously in this paper or in Ref. [2]. Our next
step is to measure z, @, and V.

In Fig. 6 we plot the values of z, @, and ¥ as measured in
our simulations. We measure z by averaging over long-lived
contacts, which are pairs of contacting grains that were also
contacting in the previous time step. This ensures that only
the static backbone of the force network is considered and
that transient contacts do not artificially increase the coordi-
nation number. This measurement does not depend on the
time step, as shown in the inset. We also measure ® and W,
as prescribed in Eq. (29), by averaging over the same set of
contacts. We observe that W <<® for all granular materials
we have considered.

We have now measured every variable in the constitutive
relations of Eqgs. (34)—(36). We can therefore test the validity
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FIG. 7. Tests of the constitutive relations from the force network
model. (a) Test of Eq. (34). The lhs of the equation, ”s—;,fﬂ is plotted
as a function of the rhs. This collapses the data to the line predicted
by the model. (b) The lhs of Eq. (35), ‘Y:,;ibc, plotted as a function of
the rhs, once again collapsing to the prediction. (c) The lhs of Eq.
(36), z”p;bz‘ﬁ, plotted as a function of the rhs. All of the plots have
been constructed using simulation data for each variable, and no

fitting parameters have been utilized.

of the predictions without using any fitting parameters. Due
to the complexity of the equations, it is convenient to plot the
rhs of each equation versus the lhs. This is shown in Fig. 7
using all of the data we have collected. Plotted in this way,
the data for each component of the stress tensor collapse onto
the line predicted by the force network model over more than
four decades. This collapse is especially striking since the
variables in the predictions have a wide variance as a func-
tion of both restitution coefficient and packing fraction.
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The collapse of our data onto the predicted curves sug-
gests that the force network model captures an essential
property of granular materials over a broad range of densities
and restitution coefficients. The success of the model is
based on visualizing granular materials as conglomerates of
interacting networks, instead of collections of grains. Thus
the packing fraction and restitution coefficient, which are
grain properties, are substituted by the size, coordination,
and other properties of the networks. This allows for consti-
tutive relations to be determined analytically.

Finally, it is important to remark that the constitutive re-
lations from the force network model have been derived in
the limit of perfectly rigid grains, which may not always
apply to realistic flows with finite grain stiffness. In the case
of finite grain stiffness, there is a finite speed v, at which
forces propagate through the network. Combined with the
lifetime of the networks 7, this sets a maximum correlation
length v,7., since information can only be transferred be-
tween a pair of grains if the network exists long enough to
propagate it. This maximum correlation length is a mono-
tonically increasing function of the grain stiffness. If v.7,
>¢, then the stress tensor can be described by Egs.
(34)—(36). However, if v,.7. <&, it is necessary to replace the
length scale ¢ with v,.7,.. Because ¢ diverges as the material
approaches the jamming limit and v.7, is always finite, we
expect that for a given grain stiffness there is a critical pack-
ing above which v.7.<&. This critical packing fraction is
always in the inertial regime and must be strictly less than v.,.
Therefore, very close to jamming, the elasticity of grains
begins to play an important role. For all other packing frac-
tions, the assumption of perfectly rigid grains is valid for
natural and experimental flows.

IV. CONCLUSIONS

The underlying microscopic interactions between grains
have a large influence on macroscopic characteristics of
granular flow. We have investigated two models of the stress
tensor—kinetic theory and the force network model—which
make different assumptions about the microscopic interac-
tions. Kinetic theory assumes that only binary collisions are
relevant and calculates the stress tensor based on grain prop-
erties, whereas the force network model allows simultaneous
interaction between many grains and calculates the stress
tensor based on properties of the resultant force networks.

For dilute flows, which occur when the size of the force
networks is small, kinetic theory makes accurate predictions.
This is not surprising since small force networks imply lo-
calized interactions and binary collisions. For dense flows,
force networks extend beyond pairs of grains and the predic-
tions of kinetic theory no longer match data from simula-
tions. This is because grain-grain correlations are induced via
the force networks and kinetic theory does not take them into
account. However, correlations never exist between isolated
networks, and by constructing the force network model
based on network properties, we are able to accurately pre-
dict the stress tensor for both dilute and dense flows.

The force network model predicts all independent compo-
nents of the stress tensor over the entire inertial regime and
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matches data from simulations for more than four decades.
Extensions of the model could be used to predict other quan-
tities, including the contact force distribution function P(f).
An integral part of any such theory is the finite size of the
force networks, which has important effects on the qualita-
tive features of P(f) [2]. Further extensions could also
specify relations between network parameters and thereby
simplify the constitutive equations (34)—(36). While it is pos-
sible that the relations between network parameters are com-
plicated and depend on many factors, it is likely that simple
scalings exist near the network transition at v,.. For v= 1,
the deviation between the static and collisional stress tensors
is proportional to (z—1) and it is likely that network param-
eters also scale with powers of (z—1). In particular, it would
be interesting to probe the dependence of & on (z—1), al-
though fluctuations in the parameters have complicated our
measurement of this relation.

Finally, while we have concentrated on the inertial re-
gime, it is also important to understand how natural flows
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make the transition from dynamics dominated by inertia, to
quasistatic dynamics, and ultimately to how the system jams.
Along this sequence, the stiffness of the grains plays an in-
creasingly active role in the dynamics. The force network
model can accommodate the development of stiffness by in-
corporating a maximum length scale through which forces
can propagate. Including this mechanism for a granular ma-
terial moving through v, may help connect the dense inertial
regime with the quasistatic regime and facilitate a more com-
plete understanding of dry granular materials.
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